Clustering-Based Leaders' Selection in Multi-Objective Particle Swarm Optimisation
نویسندگان
چکیده
Clustering-based Leaders’ Selection (CLS) is a novel approach for leaders selection in multi-objective particle swarm optimisation. Both objective and solution spaces are clustered. An indirect mapping between clusters in both spaces is defined to recognize regions with potentially better solutions. A leaders archive is built which contains representative particles of selected clusters in the objective and solution spaces. The results of applying CLS integrated with OMOPSO on seven standard multi-objective problems, show that clustering based leaders selection OMOPSO (OMOPSO/C) is highly competitive compared to the original algorithm.
منابع مشابه
Similarity based Multi-objective Particle Swarm Optimisation for Feature Selection in Classification
This paper presents a particle swarm optimisation (PSO) based multi-objective feature selection approach to evolving a set of non-dominated feature subsets and achieving high classification performance. Firstly, a pure multi-objective PSO (named MOPSO-SRD) algorithm, is applied to solve feature selection problems. The results of this algorithm is then used to compare with the proposed a multi-o...
متن کاملA hierarchical Mamdani-type fuzzy modelling approach with new training data selection and multi-objective optimisation mechanisms: A special application for the prediction of mechanical properties of alloy steels
In this paper, a systematic data-driven fuzzy modelling methodology is proposed, which allows to construct Mamdani fuzzy models considering both accuracy (precision) and transparency (interpretability) of fuzzy systems. The new methodology employs a fast hierarchical clustering algorithm to generate an initial fuzzy model efficiently; a training data selection mechanism is developed to identify...
متن کاملA Particle Swarm Optimisation Based Multi-objective Filter Approach to Feature Selection for Classification
Feature selection (FS) has two main objectives of minimising the number of features and maximising the classification performance. Based on binary particle swarm optimisation (BPSO), we develop a multi-objective FS framework for classification, which is NSBPSO based on multi-objective BPSO using the idea of non-dominated sorting. Two multi-objective FS algorithms are then developed by applying ...
متن کاملDetermining Cluster-Heads in Mobile Ad-Hoc Networks Using Multi-Objective Evolutionary based Algorithm
A mobile ad-hoc network (MANET), a set of wirelessly connected sensor nodes, is a dynamic system that executes hop-by-hop routing independently with no external help of any infrastructure. Proper selection of cluster heads can increase the life time of the Ad-hoc network by decreasing the energy consumption. Although different methods have been successfully proposed by researchers to tackle...
متن کاملDetermining Cluster-Heads in Mobile Ad-Hoc Networks Using Multi-Objective Evolutionary based Algorithm
A mobile ad-hoc network (MANET), a set of wirelessly connected sensor nodes, is a dynamic system that executes hop-by-hop routing independently with no external help of any infrastructure. Proper selection of cluster heads can increase the life time of the Ad-hoc network by decreasing the energy consumption. Although different methods have been successfully proposed by researchers to tackle...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011